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Abstract. We introduce the supersymmetric extension of the box–ball system. By use of the
isomorphism of the crystal base for the super Lie algebra, we define the time evolution operator,
and give the evolution equation explicitly. We also construct the soliton solutions.

1. Introduction

Cellular automata have been widely studied in various fields of physics [1]. Among them, there
exists an integrable family of cellular automata. The most well known one is that introduced
in [2], called the box–ball system (BBS). This BBS has a kind of soliton solution, and one may
expect that a connection with the soliton equation exists. Indeed, this problem was solved [3]
by introducing a method of ‘ultra-discretization’, and it was established that the BBS in [2]
is a certain limit of the KdV-type integrable difference–difference equation [4, 5]. We can
then define the BBS associated with the sl(M) Lie algebra from a discrete analogue of the KP
equation (Hirota–Miwa equation) [6].

Recently we have found another important interpretation of the BBS [7]. The evolution
of the BBS has been regarded as the configuration at zero temperature (‘crystallization’) of
the integrable vertex model on a two-dimensional square lattice with appropriate boundary
conditions. After that work, the crystallization method was re-formulated by use of the crystal
base [8–10], and a new type of BBS was introduced in [9], based on the crystal base for
arbitrary classical Lie algebra. Unfortunately, the evolution rule thereof is very involved, and
it is difficult to obtain an explicit form of the evolution equation, and to see a relationship
with a difference analogue of the soliton equation. In this paper, alternatively we use the
supersymmetric extension (Z2-grading) of the Lie algebra, and define a new BBS. The notion of
the supersymmetry becomes clear when we regard the auxiliary space as a ‘carrier’ [11]. We can
give evolution equations explicitly, and we propose two-soliton solutions from a combinatorics
viewpoint.

This paper is organized as follows. In section 2 we give a brief review on the crystal base
for the super Lie algebra. The crystal isomorphism is explicitly written following [12]. In
section 3 we define the evolution operator based on the crystal base. The ‘soliton’ is introduced
as the semi-standard tableau. In section 4 we explicitly introduce an evolution equation for
the supersymmetric extension of the BBS. We clarify a meaning of the supersymmetry from
a BBS viewpoint. We further construct the soliton solutions explicitly. We conjecture that
the combinatorial property appears not only in the soliton scattering but in the S-matrix in the
τ -functions. The final section is devoted to concluding remarks.
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2. Crystal base for superalgebra

We briefly review the crystal base for the superalgebra Uq(sl(M + 1|N + 1)) following [12].
Here we use slightly different notation from that in [12], and the Dynkin diagram [13] is drawn
as follows:

1 2 M M C 1 M C 2 M C N C 1.

As was stressed in [12], the representation for the super Lie algebra is not completely
reducible in general, and here we use a certain class of representation stable under tensor
products. It will become clear that the property of the tensor product is essential in constructing
the BBS [7]. We set the crystal base B for the fundamental representation as

B = B+ � B−

where

B+ = {0, 1, 2, . . . ,M}
B− = {M + 1,M + 2, . . . ,M +N,M +N + 1}.

The action of the Kashiwara operator [14] is summarized in the crystal graph

0
1→ 1

2→ · · · M→ M
M+1−−→ M + 1 −→ · · · M+N+1−−−−−→ M +N + 1 . (2.1)

Here, as usual, b
i→ b′ denotes f̃ib = b′. For this vector space of the fundamental module,

we assign an ordering on B by

0 < 1 < 2 < · · · < M < M + 1 < · · · < M +N + 1.

We set b ∈ B as an element of the crystal B, and define εi(b) and ϕi(b) for i ∈
{1, 2, . . . ,M +N + 1} respectively, as

εi(b) = max{n ∈ Z�0|ẽ ni b �= 0}
ϕi(b) = max{n ∈ Z�0|f̃ n

i b �= 0}.
For crystalsB1 andB2, we can define the tensor productB1⊗B2 = {b1⊗b2|b1 ∈ B1, b2 ∈ B2},
and the Kashiwara operators act as follows:

• i = 1, . . . ,M

ẽi(b1 ⊗ b2) =
{
ẽi (b1)⊗ b2 if ϕi(b1) � εi(b2)

b1 ⊗ ẽi (b2) if ϕi(b1) < εi(b2)

f̃i(b1 ⊗ b2) =
{
f̃i(b1)⊗ b2 if ϕi(b1) > εi(b2)

b1 ⊗ f̃i(b2) if ϕi(b1) � εi(b2)

• i = M + 1

ẽi (b1 ⊗ b2) =
{
ẽi (b1)⊗ b2 if ϕi(b1) + εi(b1) = 1

σb1 ⊗ ẽi (b2) if ϕi(b1) + εi(b1) = 0

f̃i(b1 ⊗ b2) =
{
f̃i(b1)⊗ b2 if ϕi(b1) + εi(b1) = 1
σb1 ⊗ f̃i(b2) if ϕi(b1) + εi(b1) = 0
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• i = M + 2, . . . ,M +N + 1

ẽi (b1 ⊗ b2) =
{
b1 ⊗ ẽi (b2) if ϕi(b2) � εi(b1)

ẽi(b1)⊗ b2 if ϕi(b2) < εi(b1)

f̃i(b1 ⊗ b2) =
{
b1 ⊗ f̃i(b2) if ϕi(b2) > εi(b1)

f̃i(b1)⊗ b2 if ϕi(b2) � εi(b1).

Here σ is the parity operator,

σ(ẽi) = (−)p(i)ẽi σ (f̃i) = (−)p(i)f̃i
with p(i) = 1 for i = M + 1, and p(i) = 0 otherwise.

To parametrize the tensor product, we use the semi-standard tableau (see, e.g., [15]). Here
the ‘semi-standard’ tableau is defined as a tableau obtained from a Young diagram by filling
the boxes with elements of B subject to the following two constraints [12]:

• the entries in each row are increasing, allowing the repetition of elements in B+, but not
permitting the repetition of elements in B− and

• the entries in each column are increasing, allowing the repetition of elements in B−, but
not permitting the repetition of elements in B+.

It was proved [12] that, for any (M + 1, N + 1)-hook Young diagram Y , we can embed the
crystal structure, and that the crystal B(Y ) is connected. Note that the Young tableau and the
Kac–Dynkin diagram for the super Lie algebra were also discussed in [16].

Hereafter, we use B� = B

(
· · ·︸ ︷︷ ︸
�

)
for brevity, and we consider the crystal

isomorphism, B� ⊗ Bm
∼→ Bm ⊗ B�. In a simple case, we have the crystal isomorphism,

B� ⊗ B
∼−→ B ⊗ B�

as follows [12]:

• If b a1 is semi-standard, then

a1 a2 · · · a� ⊗ b
∼�−→ a� ⊗ b a1 · · · a�−1

• If
a1

b
is semi-standard, then

a1 · · · aj · · · a� ⊗ b
∼�−→ aj ⊗ a1 · · · b · · · a�

where j is the largest integer such that
aj
b

is semi-standard.

Based on a fact that the ‘admissible reading’

B� −→ B⊗�

a1 · · · a� �−→ a� ⊗ · · · ⊗ a1

induces a crystal structure on B� [12], we have the following rule as an extension of [17] to
obtain the crystal isomorphism,

B� ⊗ Bm
∼−→ Bm ⊗ B�

b1 ⊗ b2
∼�−→ b′

2 ⊗ b′
1.
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Here we suppose � � m. We set b1 = a1 a2 · · · a� , b2 = a′
1 a′

2 · · · a′
m with

x(i) = #{k|ak = i}, y(i) = #{k|a′
k = i}. We represent b1 ⊗ b2 by the two column diagrams.

Each column hasM +N + 2 rows, and we put x(i) (resp. y(i)) dots • in the ith row of the left
(resp. right) column. Note that 0 � x(i), y(i) � 1 if i ∈ B−. We call the ith box the bosonic
(resp. fermionic) box when i ∈ B+ (resp. i ∈ B−). The shaded box denotes the fermionic
one. The role of the dotted lines will be clarified later.

b1 
 b2 D

� � � � �
| {z }

x.0/

:

:

:

� � � � �
| {z }

x.M/

�
|{z}

x.MC1/

:

:

:

�
|{z}

x.MCNC1/

� � � � �
| {z }

y.0/

:

:

:

� � � � �
| {z }

y.M/

�
|{z}

y.MC1/

:

:

:

�
|{z}

y.MCNC1/

(2.2)

(i) Pick the dot •a which is located in the highest position in the right column. If the dot •a is
in the bosonic box, connect it with the dot in the left column which has the lowest position
among all dots whose positions are higher than that of •a . When there is no such dot on
the left, return to the bottom. If the dot •a is in the fermionic box, the partner in the left
column is the dot which is the lowest among all dots whose positions are higher than or
equal to that of •a .

(ii) Repeat the previous process for the remaining unconnected dots in the right column.

(iii) The crystal isomorphism, b1⊗b2
∼�→ b′

2⊗b′
1, is obtained by sliding the remaining unpaired

dots in the left column to the right one.

An example below which is the sl(2, 1) case indicates the crystal isomorphism,
0 0 1 2 ⊗ 1 2

∼�−→ 0 2 ⊗ 0 1 1 2 .

�

�

��

�

�

3. Evolution operator and soliton

We shall introduce the evolution operator of the BBS by the crystal isomorphism, and consider
a notion of a ‘soliton’.
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3.1. Evolution operator

The idea which was introduced in [7] and was developed in [8–10] is to define the evolution
operator T� by

T� : a1 ⊗ a2 ⊗ · · · ⊗ aL �−→ a′
1 ⊗ a′

2 ⊗ · · · ⊗ a′
L (3.1)

where we have the crystal isomorphism,

0 0 · · · 0︸ ︷︷ ︸
�

⊗ a1 ⊗ a2 ⊗ · · · ⊗ aL

∼�−→ a′
1 ⊗ a′

2 ⊗ · · · ⊗ a′
L ⊗ 0 0 · · · 0︸ ︷︷ ︸

�

. (3.2)

Here we set L � 1, and aj = a′
k = 0 for sufficiently large j , k. This can be drawn

schematically as

B` -

? ? ?

B B B

? ?

B B

By definition of the crystal base, the evolution operators commute with each other:

[T�, Tm] = 0 (3.3)

where � and m are arbitrary positive integers. Note that this relation is depicted as

-

-Bm

B`

?

B

?

B

?

B

D

-

?

Bm

B`

?

B

?

B

?

B

Hereafter we use

T = lim
�→∞

T� (3.4)

and we consider the BBS associated with this evolution operator T .

3.2. Soliton and scattering

We call the following configuration a ‘soliton’ of length m:

· · · ⊗ 0 ⊗ a1 ⊗ · · · ⊗ am︸ ︷︷ ︸
m

⊗ 0 ⊗ 0 ⊗ · · · (3.5)

where aj �= 0 and am · · · a2 a1 is semi-standard. We can see from the crystal
isomorphism rule that the soliton (3.5) propagates rightward by step min(�,m) when the
configuration is evolved by the operator T� (3.1). In the following we denote the above soliton
as [a1a2 . . . am] for brevity.
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Following a strategy presented in [10] we can see that the scattering of solitons is factorized
into two-body scattering based on the commutativity of the evolution operator (3.3). It is
important that the velocity of the soliton is suppressed when we use the evolution operator
T� which commutes with T , and that we can change the order of the scattering to obtain the
out-going state.

Furthermore, as in the case of the sl(M + 1) BBS, the two-soliton scattering in our BBS,

[a1 · · · a�] × [b1 · · · bm] → [b′
1 · · · b′

m] × [a′
1 · · · a′

�]

coincides with the crystal isomorphism for sl(M|N + 1):

B� ⊗ Bm
∼−→ Bm ⊗ B�

a� · · · a1 ⊗ bm · · · b1
∼�−→ b′

m · · · b′
1 ⊗ a′

� · · · a′
1

where we should shift the crystal base (2.1) for sl(M|N + 1) as 1 → · · · → M +N + 1 .
This is proved, owing to the fact thatUq(sl(M|N + 1)) is a subalgebra ofUq(sl(M + 1|N + 1)),
by checking for the ‘genuine’ lowest weight [12].

4. Evolution equation

We now introduce the evolution equations of the BBS constructed by the evolution operator
T (3.4), and give the soliton solutions explicitly. To relate the crystal base B to the BBS, we
interpret the crystal base b ∈ B as

0 : empty box

a : box is occupied by ball a (a �= 0).

Due to a supersymmetry we classify ball a by

ball a :

{
bosonic for 1 � a � M

fermionic for M + 1 � a � M +N + 1.

Throughout this section, utn,a denotes the number of balls a in the nth box at time t . Variables
vtn,a denote the number of balls in the auxiliary space (or the carrier), and satisfy a condition [7]

utn,j + vtn,j = ut+1
n,j + vtn+1,j (4.1)

for j = 1, 2, . . . ,M +N + 1.

4.1. sl(2|1)
The first nontrivial example is for sl(2|1), because the sl(1|1) case corresponds to the BBS
with the carrier whose capacity is one [8]. We find that the evolution equation of the BBS
defined by the evolution operator T (3.4) is explicitly written as

ut+1
n,1 = min[vtn,1, 1 − utn,1 − ut+1

n,2] (4.2a)

ut+1
n,2 = min[vtn,2, 1 − utn,1]. (4.2b)

Note that we have a constraint (4.1) for j = 1, 2, and that utn,1 = utn,2 = 0 means that the nth
box is empty at time t .

The evolution equation (4.2) can be interpreted in a picture of the BBS:

(i) We take the leftmost ball 2 (fermionic) out of its box, and put it in the first empty box to
its right.
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(ii) We take the new leftmost ball 2 as long as it has not yet been moved at this time step and
not been overtaken by the previously moved ball 2. We then move it to the first empty
box to its right. We leave the overtaken ball 2 as it is.

(iii) We continue the previous process until every ball 2 has been moved. Note that the
overtaken ball 2 can be regarded as having moved.

(iv) We take the leftmost ball 1, and move it to the first empty box to its right.
(v) Take the new leftmost unmoved ball 1, and move it to the first empty box to its right.

(vi) Continue the previous process till every ball 1 has been moved. These steps (i)–(vi)
represent a unit time step.

(vii) Repeat the above processes.

A rule for moving balls depends on whether the ball is fermionic or bosonic.
From a definition of the semi-standard tableau, the auxiliary ‘carrier’ has one ball 2 at

most, and we can easily see the fermionic property of ball 2. See that the rule for ball 1, which
is bosonic, is the same as an original BBS in [2].

We give several examples of the evolutions below.

(a) [211] × [1] → [2] × [111]

t = 0 : 021100010000000000

1 : 000021101000000000

2 : 000000020111000000

3 : 000000002000111000

(b) [211] × [2] → [2] × [211]

t = 0 : 021100020000000000

1 : 000021102000000000

2 : 000000021210000000

3 : 000000000202110000

4 : 000000000020002110

(c) ([111] × [21])× [2] → [1] × [21] × [211]

t = 0 : 011102100020000000000000000000

1 : 000011021102000000000000000000

2 : 000000110021210000000000000000

3 : 000000001100202110000000000000

4 : 000000000011020002110000000000

5 : 000000000000112000002110000000

6 : 000000000000001210000002110000

7 : 000000000000000102100000002110

(d) [111] × ([21] × [2]) → [1] × [21] × [211]

t = 0 : 0111000021020000000000000

1 : 0000111000212000000000000

2 : 0000000111002210000000000

3 : 0000000000111202100000000

4 : 0000000000000121021100000

5 : 0000000000000010210021100.



4088 K Hikami and R Inoue

The last two examples show that the out-going state does not depend on the order of collisions,
as explained at the end of section 3.1.

One sees that the evolution is very similar to the BBS associated with sl(3) [7]. We should
note again that a difference is that the carrier can only have at most one ball 2 while an infinite
number of balls 1 can occupy the carrier simultaneously.

We consider the soliton solution. We set the dynamical variables by use of the ultradiscrete
τ -function as [6, 8, 18]

utn,1 = Y tn +Xt
n+1 − Y tn+1 −Xt

n utn,2 = Y t−1
n+1 +Xt

n − Y t−1
n −Xt

n+1. (4.3)

Substituting the above equation into the evolution equation (4.2), we obtain the following
equations:

Xt
n + Y t+1

n+1 = max[Y tn +Xt+1
n+1, X

t
n+1 + Y t+1

n − 1] (4.4a)

Xt+1
n+1 +Xt

n + Y t−1
n = max[2Xt

n + Y tn+1, X
t+1
n +Xt

n+1 + Y t−1
n − 1]. (4.4b)

In contrast to the sl(M) case [8], we obtain both the bilinear and trilinear equations. Based on
the numerical experiments of the soliton solutions of the sl(M) BBS [8,18], we have obtained
some of the soliton solutions as follows:

(1) One-soliton solution.

Y tn = max[0, C + n− pt − p]

Xt
n = max[0, C + n− pt − x]

where C is arbitrary integer, and x denotes the number of ‘2’ in the soliton. Because ball
2 is fermionic, we have x ∈ {0, 1}. The length of soliton p � x denotes a velocity of the
soliton. It is remarked that the one-soliton solution for the sl(3) case has the same form
but x is arbitrary.

(2) Two-soliton solution.
We set p1 and p2 as velocities of solitons (pr ∈ Z+), and suppose that p1 � p2. We define
the τ -functions as

Y tn = max[0, C1 + n− p1(t + 1), C2 + n− p2(t + 1),

C1 + C2 + 2n− (p1 + p2)(t + 1)− S1]

Xt
n = max[0, C1 + n− p1t − x, C2 + n− p2t − x,

C1 + C2 + 2n− (p1 + p2)t − 2x − S2]

where Cr is arbitrary, and the scattering matrix is given by

S1 = 2p2 − y S2 = 2p2 − x

with x, y ∈ {0, 1}. This solution describes the following scattering of the two solitons:

x y :
p1︷ ︸︸ ︷× p2︷ ︸︸ ︷→ p2︷ ︸︸ ︷× p1︷ ︸︸ ︷

0 0 : [11 . . . 1] × [11 . . . 1] → [11 . . . 1] × [11 . . . 1]

0 1 : [11 . . . 1] × [21 . . . 1] → [11 . . . 1] × [21 . . . 1]

1 0 : [21 . . . 1] × [11 . . . 1] → [21 . . . 1] × [11 . . . 1]

1 1 : [21 . . . 1] × [21 . . . 1] → [21 . . . 1] × [21 . . . 1]

One can check that the soliton scattering obeys the crystal isomorphism, Bp1 ⊗ Bp2

∼→
Bp2 ⊗ Bp1 , for sl(1|1).
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4.2. sl(1|2)
We have two kinds of ball as in the case of sl(2|1), but here each ball acts like a fermion. We
find from the crystal isomorphism in section 2 that the evolution equation for the evolution
operator T is written by

ut+1
n,1 = min[vtn,1, 1 − ut+1

n,2]

ut+1
n,2 = min[vtn,2, 1 − utn,1]

where, as before, we have a constraint (4.1). This evolution equation can also be interpreted by
the BBS picture, and the rule to move each ball as the BBS is similar to the rule in section 4.2;
we only replace (v) with (v′),

(v′) Take the leftmost ball 1, which is unmoved and is not overtaken by the previously moved
ball 1, and move it to the first empty box to its right. We leave the ball 1 which was
overtaken as it is.

As seen from the definition of the semi-standard tableau, we have only three kinds of soliton:
[2], [1] and [21]. The velocity of the first two is unity, while the last one has twice the velocity.
We substitute equations (4.3) into the evolution equations (4.5), and we obtain two trilinear
equations,

Xt
n + Y tn + Y t+1

n+1 = max[Xt+1
n+1 + 2Y tn,X

t
n + Y tn+1 + Y t+1

n − 1] (4.6a)

Xt+1
n+1 +Xt

n + Y t−1
n = max[2Xt

n + Y tn+1, X
t+1
n +Xt

n+1 + Y t−1
n − 1]. (4.6b)

Unfortunately, we do not know the general soliton solutions and we explicitly give some soliton
solutions below:

(1) One-soliton solution.

Y tn = max[0, C + n− pt − p]

Xt
n = max[0, C + n− pt − x]

where C is arbitrary, and we have (p, x) = (2, 1), (1, 0), (1, 1).
(2) Two-soliton solution.

Y tn = max[0, C1 + n− 2(t + 1), C2 + n− (t + 1), C1 + C2 + 2n− 3(t + 1)− 1]

Xt
n = max[0, C1 + n− 2t − 1, C2 + n− t − x, C1 + C2 + 2n− 3t − x − 2]

where Cj is arbitrary, and x = {0, 1}. We give two typical examples below:

(a) x = 0, i.e., [21] × [1] → [1] × [21]

t = 0 : 02100100000000

1 : 00021010000000

2 : 00000211000000

3 : 00000001210000

4 : 00000000102100

(b) x = 1, i.e., [21] × [2] → [2] × [21]

t = 0 : 02102000000000

1 : 00021200000000

2 : 00000221000000

3 : 00000020210000

4 : 00000002002100
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One also sees that the soliton scattering, [21]×[1] and [21]×[2], obeys the crystal isomorphism,
B2 ⊗ B1

∼→ B1 ⊗ B2 for sl(0|2).

4.3. sl(M + 1|N + 1)

We shall derive the evolution equations for the BBS associated with the supersymmetric
sl(M + 1|N + 1) algebra. For our convention, we use the notation

B′
+ = B+ \ {0} = {1, 2, . . . ,M} B− = {M + 1,M + 2, . . . ,M +N + 1}.

From the definitions of the semi-standard tableau and the evolution operators, we can check
that the evolution equations can be summarized as follows:

ut+1
n,j = min

[
vtn,j , 1 −

j∑
i=1

utn,i −
M+N+1∑
i=j+1

ut+1
n,i

]
for j ∈ B′

+ (4.7a)

ut+1
n,j = min

[
vtn,j , 1 −

j−1∑
i=1

utn,i −
M+N+1∑
i=j+1

ut+1
n,i

]
for j ∈ B− (4.7b)

where

utn,j + vtn,j = ut+1
n,j + vtn+1,j for j = 1, 2, . . . ,M +N + 1. (4.8)

The interpretation of the BBS is simple. We haveM andN + 1 kinds of bosonic and fermionic
ball respectively, and a rule of the BBS is as follows:

(i) Set a = M +N + 1.
(ii) Take the leftmost ball a out of its box, and put it in the first empty box to its right.

(iii) When the ball a is bosonic, take the leftmost ball a as long as it has not been moved at
this time step. If the ball a is fermionic, take the leftmost ball a as long as it has not yet
been moved and further it has not been overtaken by the moved ball a. Then put it in the
first empty box to its right.

(iv) Continue the process (iii) until every ball a has been moved. Note that, when ball a is
fermionic, the overtaken ball a is regarded as having been moved.

(v) Continue the same processes (ii)–(iv) for other balls, a = M + N,M + N − 1, . . . , 2, 1.
Steps (i)–(v) represent one time step.

(vi) Repeat the processes (i)–(v).

To construct the soliton solutions of the BBS, we set the dynamical variables in terms of
the ultra-discretized τ -functions as

utn,j = Y (t, n, j) + Y (t, n + 1, j + 1)− Y (t, n + 1, j)− Y (t, n, j + 1)
vtn,j = Y (t + 1, n, j) + Y (t, n, j + 1)− Y (t, n, j)− Y (t + 1, n, j + 1)

(4.9)

where we suppose a condition,

Y (t, n, 1) = Y (t + 1, n,M +N + 2).

By substituting (4.9) into the evolution equations (4.7), we obtain the bilinear and trilinear
equations as follows:

Y (t + 1, n + 1, j) + Y (t, n, j + 1) = max[Y (t, n, j) + Y (t + 1, n + 1, j + 1),

Y (t, n + 1, j + 1) + Y (t + 1, n, j)− 1] for j ∈ B′
+ (4.10a)

Y (t, n, j) + Y (t + 1, n + 1, j) + Y (t, n, j + 1) = max[2Y (t, n, j) + Y (t + 1, n + 1, j + 1),

Y (t + 1, n, j) + Y (t, n + 1, j) + Y (t, n, j + 1)− 1] for j ∈ B−.
(4.10b)
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A set of the bilinear equations is same as that for the sl(M + 1) BBS [8,18], while the trilinear
equation is new. Below, we give the one- and two-soliton solutions.

(1) One-soliton solution.
When the soliton [a1 . . . ap] propagates, we can set the τ -function as

Y (t, n, j) = max

[
0, C + n− pt −

M+N+1∑
i=j

x(i)

]
(4.11)

where C is an arbitrary integer, and p is the length of the soliton. Variables x(i) denote
the number of i in the soliton, x(i) = #{k|ak = i}.

(2) Two-soliton solution.
We consider the scattering of two solitons,

[a1 . . . ap1 ] × [b1 . . . bp2 ] → [b′
1 . . . b

′
p2

] × [a′
1 . . . a

′
p1

]

where we suppose p1 � p2. To write the soliton solutions, we use the column
interpretation (2.2) of the crystal base. Note that, in the soliton scattering in the
sl(M + 1|N + 1) case, we use the crystal base for sl(M|N + 1), and shift the bases as
1 → · · · → M +N + 1 . We conjecture that the τ -function is given by

Y (t, n, j) = max[0, ξ1(n, t, j), ξ2(n, t, j), ξ1(n, t, j) + ξ2(n, t, j)− S(j)]

ξr(n, t, j) = Cr + n− prt −
M+N+1∑
i=j

xr(i) for r = 1, 2.
(4.12)

Here Cr is arbitrary, and we set

x1(i) = #{k|ak = i} x2(i) = #{k|b′
k = i}.

Note that x2(i) depends on the out-going soliton state. The scattering matrix S(j) is

S(j) = p2 +H(j) (4.13)

where H(j) is the number of lines that cross the j th dotted line between two columns when
we represent two solitons by the diagram (2.2) and apply a rule for the isomorphism.

For example, we consider [432211] × [3222] scattering for the sl(3|2) case (balls 3 and
4 are fermionic). The out-going state is determined as [4311] × [322222], and the scattering
parameters H(j) are given by H(1) = 1, H(2) = 3, H(3) = 0, H(4) = 0:

The solution (4.12) gives all the two-soliton solutions. This form has not been known even in
the sl(M) case.
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We list scattering data for the sl(1|3) case below, where all three balls are fermionic, and
the scattering matrix, S(j) = p2 +H(j), is determined by the above rule.

in-coming → out-going : H(1) H(2) H(3)
[32] × [3] → [3] × [32] : 0 0 0

[32] × [2] → [2] × [32] : 0 0 0

[32] × [1] → [3] × [21] : 1 0 0

[31] × [3] → [3] × [31] : 0 0 0

[31] × [2] → [1] × [32] : 0 1 0

[31] × [1] → [1] × [31] : 0 0 0

[21] × [3] → [2] × [31] : 0 0 1

[21] × [2] → [2] × [21] : 0 0 0

[21] × [1] → [1] × [21] : 0 0 0

[321] × [3] → [3] × [321] : 0 0 0

[321] × [2] → [2] × [321] : 0 0 0

[321] × [1] → [1] × [321] : 0 0 0

[321] × [32]→[32] × [321] : 0 0 0

[321] × [31]→[31] × [321] : 0 0 0

[321] × [21]→[21] × [321] : 0 0 0

See that the scattering rule is governed by the crystal isomorphism for sl(0, 3).
We note that both the out-going states and the scattering matrix depend on the underlying

Lie algebra even if the in-coming state is the same. See the following examples:

algebra : in-coming → out-going : H(1) H(2) H(3) H(4)
sl(5), sl(4, 1) : [432111] × [321]→[421] × [332111] : 1 1 1 0

sl(3, 2) : [432111] × [321]→[431] × [322111] : 1 1 0 0

sl(2, 3) : [432111] × [321]→[432] × [321111] : 1 0 0 0

5. Concluding remarks

We have introduced a new integrable BBS system based on the super Lie algebra. We have
used the crystal isomorphism (3.1) to define the evolution operator. We have further given the
explicit form of the evolution equation (4.7), and constructed the soliton solutions by use of the
τ -function. It is interesting that our two-soliton solution (4.12) has a combinatorial property
not only in the scattering state but also in the S-matrix in the τ -function. We remark that we
obtain essentially the same evolution equation as (4.7) when we use another tensor product,

M +N + 1
...

M +N + 1

⊗ a1 ⊗ · · · ⊗ aL
∼�−→ a′

1 ⊗ · · · ⊗ a′
L ⊗

M +N + 1
...

M +N + 1
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In this case, the two-soliton scattering can be described by the crystal isomorphism B(1�) ⊗
B(1m)

∼−→ B(1m)⊗ B(1�), where

B(1�) = B


 ...


 �


 .

The evolution equation (4.7) can be related to the ultra-discrete analogue of the Toda-type
equation as was discussed in [6] for the sl(M) case. We suppose that our BBS associated with
sl(M + 1|N + 1) has K solitons. We set Qt(i)

n (for i ∈ B′
+ � B−) as the number of balls i

in the nth soliton from the left at time t . We further introduce Et(M+N+1)
n as the number of

empty boxes between the nth and the (n + 1)th solitons at time t . Based on the rule of our
supersymmetric BBS, the evolution equations are given by

Qt+1(i)
n = min

[ n∑
j=1

Q
t(i)
j −

n−1∑
j=1

Q
t+1(i)
j , Et(i)n

]
for i ∈ B′

+ (5.1a)

Qt+1(i)
n = min

[ n∑
j=1

Q
t(i)
j −

n−1∑
j=1

Q
t+1(i)
j , Et(i)n +Qt(i)

n+1

]
for i ∈ B− (5.1b)

Et(i−1)
n = Q

t(i)
n+1 + Et(i)n −Qt+1(i)

n . (5.1c)

Each variable Et(i)n (for i = 1, 2, . . . ,M + N ) is determined by (5.1c) recursively, and it
denotes the number of empty boxes between the nth and (n + 1)th solitons just before Qt+1(i)

n

is fixed by (5.1a) or (5.1b). We note that we set Et(i)0 = E
t(i)
K = ∞, and suppose a periodicity,

Et(0)n = Et+1(M+N+1)
n . When the dynamical variables Et(j)n (for n = 0, 1, . . . , K) and Qt(j)

n

(for n = 1, 2, . . . , K) are respectively written as

Et(i)n = X
t(i)
n+1 +Xt+1(i)

n−1 −Xt(i)
n −Xt+1(i)

n (5.2a)

Qt(i)
n = X

t(i)
n−1 +Xt(i−1)

n −Xt(i)
n −X

t(i−1)
n−1 (5.2b)

we find that the ultradiscrete τ -function satisfies a set of the bilinear and the trilinear equations
as (4.10)

Xt+1(i)
n +Xt(i+1)

n

= min[Xt(i)
n +Xt+1(i+1)

n , X
t(i+1)
n+1 +Xt+1(i)

n−1 ] for i ∈ B′
+ (5.3a)

Xt+1(i)
n +Xt(i+1)

n +Xt(i)
n

= min[2Xt(i)
n +Xt+1(i+1)

n , Xt(i)
n +Xt(i+1)

n +Xt+1(i)
n−1 ] for i ∈ B− (5.3b)

where n = 1, 2, . . . , K , and we have Xt(i)
−1 = X

t(i)
K+1 = ∞ and Xt(i)

0 = 0.
In [3], a relationship is established between Takahashi’s BBS and the integrable difference–

difference equation called the Hirota equation [4]. The procedure to derive the BBS from the
difference–difference equation is called ultra-discretization. When we simply apply an inverse
of ultra-discretization to our new BBS (4.10), we obtain a set of the following bilinear and
trilinear equations:

(1 + δ)τ (t + 1, n + 1, j)τ (t, n, j + 1)

= τ(t, n, j)τ (t + 1, n + 1, j + 1) + δτ(t, n + 1, j + 1)τ (t + 1, n, j)

for j ∈ B′
+ (5.4a)

(1 + δ)
τ (t + 1, n + 1, j)

τ (t + 1, n, j)
= τ(t, n, j)τ (t + 1, n + 1, j + 1)

τ (t + 1, n, j)τ (t, n, j + 1)
+ δ
τ(t, n + 1, j)

τ (t, n, j)

for j ∈ B−. (5.4b)
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It is natural to expect that our equations are related to the supersymmetric KP hierarchy, which
has been widely studied in [19–25]. Unfortunately, the difference–difference equation for the
supersymmetric KP hierarchy is not known, and it is unclear whether a ultra-discretization
does work for the supersymmetric KP hierarchy which includes the Grassmannian variables.

In closing we comment on the energy function. We have used the supersymmetric crystal
base to construct the integrable BBS. It was pointed out that the phase shift for the soliton
scattering in the original BBS is determined by the energy function (H -function, which is
H(1) in our definition) for the affine Lie algebra [10], which can be expected from our result
that the S-matrix in the τ -function is given by the functionH(j). Study on the phase shift and
the function H(j) in our BBS will be useful to compute the character formula for the affine
super Lie algebra by use of a method of the path configuration sum, and to see a relationship
with a result in [26].
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